Kesebangunan 3smp

Kesebangunan 3smp

  1. Kesebangunan Segitiga Sama Dan Sebangun
  2. 1.2Teori Segitiga Sama Dan Sebangun
    • Pada cermin datar, bangun asli dengan bayangan merupakan bangun-bangun yang sama dan sebangun, demikian juga segitiga dan bayangannya adalah bangun-bangun yang sama dan sebangun atau kongruen .
    • Jika a, b, c merupakan segitiga siku-siku dimana c adalah sisi miringnya, maka luas bujursangkar dengan panjang sisi c (c2) sama dengan jumlah luas bujursangkar dengan panjang sisi a (a2) dan luas bujursangkar dengan panjang sisi b (b2)." Pada kondisi dimana a = b, kalimat di atas mudah di imajinasikan dengan membayangkan segitiga siku-siku yang dibentuk oleh tile, grid atau raster. Phythaghoras menemukan teorema tersebut berawal dari imajinasi sederhana bujursangkar dalam tile tersebut. Akhirnya, bangun bujursangkar tersebut hanya mewakili bangun-bangun simetri lainnya. Karena phytaghoras juga bisa disampaikan sbb: "Jika a, b, c merupakan segitiga siku-siku dimana c adalah sisi miringnya, maka luas lingkaran dengan diamater c (pi/4 c2) sama dengan jumlah luas lingkaran dengan diameter a (pi/4 a2) dan luas lingkaran dengan diamater b (pi/4 b2)." atau sbb:
  3. 1.2Teori Segitiga Sama Dan Sebangun
    • "Jika a, b, c merupakan segitiga siku-siku dimana c adalah sisi miringnya, maka luas segitiga sama sisi dengan panjang sisi c (V3/4 c2) sama dengan jumlah luas segitiga sama sisi dengan panjang sisi a (V3/4 a2) dan luas segitiga sama sisi dengan panjang sisi b (V3/4 b2)." Akhirnya bisa disimpulkan bahwa: "Jika luas bangun simetri C sama dengan jumlah luas bangun simetri A dan luas bangun simetri B, dimana A, B, C sebangun, maka bisa dipastikan bahwa sisi-sisi (atau diameter) dari ketiga bangun tersebut jika diimpitkan akan membentuk segitiga siku-siku." Pakai teorema binomial newton (a+b)^2 = a^2 + 2ab +b^2 kemudian ubah dikit a^2 + b^2 = [ (a+b)^2 – b^2] atau dapat disederhanakan a^2 + b^2 = c^2 Rumus binomial di atas merupakan perwakilan dari gambar geometri dari dua buah persegi.
  4. Segitiga Pascal

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s